(1)当弯曲梁上的集中力矢量不经过横截面上的扭转中心时,会产生附加转矩,因此,这种情况应尽量避免,对称横截面的扭转中心就在其对称面上,横截面非对称型钢的扭转中心可查型钢几何性质表,很多型钢的扭转中心在横截面以外,因此,要使这些型钢处于仅受弯曲的状态,必须加附件或成对使用,使力矢量经过横截面上的扭转中心。
(2)多个力同时作用的结点,应尽量使各力矢量交汇于一处,这样可避免附加的弯矩,从而减低应力水平。
10)受冲击载荷结构柔性准则:
通常,构件越笨实,其刚度越大,强度越高,但这不尽然,受冲击载荷作用的结构,有时刚度增加反而导致其强度下降,这是因为,冲击载荷随着结构刚度的增加也增大。
工程应用实例:
砂轮在突然刹车时,轴受冲击扭矩,加大轴的长度,其扭转刚度下降,因冲击扭矩随之也下降,所以,轴的抗剪强度反而上升。
为了提高构件的抗冲击能力,应降低系统的刚度,加大其柔性,此即为受冲击载荷结构柔性准则。
具体措施有:
(1)增加等截面杆的长度。如气缸盖螺栓;
(2)避免截面突变。对于螺栓为保证其等截面,常将光杆部分的直径制成与螺纹的内径相等,或在螺杆内钻孔。
(3)安装缓冲器,以吸收冲击系统的能量。
(4)选用弹性模量小的材料。如,木结构比钢结构抗冲击能力强。
11)避免长压杆失稳准则:
金属构件就其材料的力学性能而言,受压时比受拉时更安全,至少同样安全。
铸铁的屈服点及其伸长率受压时都比受拉时高,有时高达4~5倍。其他脆性材料的力学性能亦相似,但是金属构件受压时并非总比受拉时更安全。
因为其承载能力不仅取决于结构的材料还取决于其形状。
机械中有许多细长压杆,例如千斤顶的螺杆,内燃机的连杆和车床的丝杆等,这些细长构件都不能按强度条件设计。
提高压杆的稳定性,具体措施有:
(1)加大截面惯性矩。失稳破坏表现为弯曲破坏,尽量将材料放在外缘。
(2)减少压杆长度。若工作条件不允许,可采用增加中间支撑的办法。
(3)加强支承的约束性。压杆与其它构件联接时,应尽可能作成刚性连接或采用较紧密的配合。
(4)截面形状和约束方式的最优组合。
压杆总是在刚度小的纵向平面内失稳,所以,应使各个纵向平面内的刚度相同或接近,当压杆两端的支承是固定端或球铰链时,采用圆形或方形较合理,当压杆两端的支承是柱铰链时,则宜采用矩形或工字形截面。
(5)合理选择材料。对于处于弹塑性阶段的中小柔度杆,采用高强度钢制造,可以提高其稳定性;对于大柔度杆,用高强度钢不能提高其稳定性,所以应采用经济的普通钢。
12)热变形自由准则:
金属构件具有热胀冷缩的特点,当热变形受限制时,则产生热应力,通过加大构件横截面尺寸的方法不能达到减低热应力的目的。(安装和使用温度不同)
减低热应力的根本措施是尽量保证热变形的自由。
工程应用实例:
管道布局时,将管道做成弯的,或在中间加膨胀节。
轴的支承端,留出变形间隙。
往期精彩推荐:
结构优化设计和创新设计新方法之变元法
机械设计禁忌500例,值得收藏反复钻研的资料
零件热处理结构工艺性设计
轴承安装错误示例,提前了解少走弯路!
来源:非标机械设计学习分享整理;