5G时代 智能工厂迎来4大改变

亿欧网 中字

5G时代智能工厂前景展望

从2016年到2018年,我国的5G基础研发测试分为三个阶段。第一阶段是5G关联技术试验,第二阶段是5G技术方案验证,第三阶段是5G的系统验证。

我国于2016年1月启动了5G技术试验,为保证实验工作的顺利开展,IMT-2020(5G)推进组在北京怀柔规划建设了30个站的5G外场。在5G第二阶段试验完成之后,第三阶段试验将于2017年年底或2018年年初启动;预计5G第一个标准版本将于2018年6月完成,完整版本或将于2019年9月完成,并有望在2020年实现大规模商用。

面对第三阶段试验,为了做好配合,进一步丰富场景,我国未来计划在6个城市开展更多的试验,包括5G技术与智慧城市的核心规划结合,助力智慧城市的建设;借助5G的试验推动双创,以及在工业互联网、智能制造方面充分利用5G技术。

智能工厂是5G技术的重要应用场景之一。利用5G网络将生产设备无缝连接,并进一步打通设计、采购、仓储、物流等环节,使生产更加扁平化、定制化、智能化,从而构造一个面向未来的智能制造网络。在此,编者整理了业界对5G时代智能工厂的前景展望,让我们一同期待新时代的到来。

助推柔性制造 实现个性化生产

全球人口正在接近80亿,中产阶层消费群不断扩大,有望形成巨大市场,进而对消费布局产生影响。带有客户需求和产品“信息”功能的系统成为硬件产品销售新的核心,个性化定制成为潮流。为了满足全球各地不同市场对产品的多样化、个性化需求,生产企业内部需要更新现有的生产模式,基于柔性技术的生产模式成为趋势。国际生产工厂研究协会的定义为:柔性制造系统是一个自动化的生产制造系统,在最少人的干预下,能够生产任何范围的产品族,系统的柔性通常受到系统设计时所考虑的产品族的限制。柔性生产的到来,催生了对新技术的需求。

一方面,在企业工厂内,柔性生产对工业机器人的灵活移动性和差异化业务处理能力有很高要求。5G利用其自身无可比拟的独特优势,助力柔性化生产的大规模普及。5G网络进入工厂,在减少机器与机器之间线缆成本的同时,利用高可靠性网络的连续覆盖,使机器人在移动过程中活动区域不受限,按需到达各个地点,在各种场景中进行不间断工作以及工作内容的平滑切换。

5G网络也可使能各种具有差异化特征的业务需求。大型工厂中,不同生产场景对网络的服务质量要求不同。精度要求高的工序环节关键在于时延,关键性任务需要保证网络可靠性、大流量数据即时分析和处理的高速率。5G网络以其端到端的切片技术,同一个核心网中具有不同的服务质量,按需灵活调整。如设备状态信息的上报被设为最高的业务等级等。

另一方面,5G可构建连接工厂内外的人和机器为中心的全方位信息生态系统,最终使任何人和物在任何时间、任何地点都能实现彼此信息共享。消费者在要求个性化商品和服务的同时,企业和消费者的关系发生变化,消费者将参与到企业的生产过程中,消费者可以跨地域通过5G网络,参与产品的设计,并实时查询产品状态信息。

工厂维护模式全面升级

大型企业的生产场景中,经常涉及到跨工厂、跨地域设备维护,远程问题定位等场景。5G技术在这些方面的应用,可以提升运行、维护效率,降低成本。5G带来的不仅是万物互联,还有万物信息交互,使得未来智能工厂的维护工作突破工厂边界。

工厂维护工作按照复杂程度,可根据实际情况由工业机器人或者人与工业机器人协作完成。在未来,工厂中每个物体都是一个有唯一IP的终端,使生产环节的原材料都具有“信息”属性。原材料会根据“信息”自动生产和维护。人也变成了具有自己IP的终端,人和工业机器人进入整个生产环节中,和带有唯一IP的原料、设备、产品进行信息交互。工业机器人在管理工厂的同时,人在千里之外也可以第一时间接收到实时信息跟进,并进行交互操作。

设想在未来有5G网络覆盖的一家智能工厂里,当某一物体故障发生时,故障被以最高优先级“零”时延上报到工业机器人。一般情况下,工业机器人可以根据自主学习的经验数据库在不经过人的干涉下完成修复工作。另一种情况,由工业机器人判断该故障必须由人来进行操作修复。

此时,人即使远在地球的另一端,也可通过一台简单的VR和远程触觉感知技术的设备,远程控制工厂内的工业机器人到达故障现场进行修复,工业机器人在万里之外实时同步模拟人的动作,人在此时如同亲临现场进行施工。

5G技术使得人和工业机器人在处理更复杂场景时也能游刃有余。如在需要多人协作修复的情况下,即使相隔了几大洲的不同专家也可以各自通过VR和远程触觉感知设备,第一时间“聚集”在故障现场。5G网络的大流量能够满足VR中高清图像的海量数据交互要求,极低时延使得触觉感知网络中,人在地球另一端也能把自己的动作无误差地传递给工厂机器人,多人控制工厂中不同机器人进行下一步修复动作。同时,借助万物互联,人和工业机器人、产品和原料全都被直接连接到各类相关的知识和经验数据库,在故障诊断时,人和工业机器人可参考海量的经验和专业知识,提高问题定位精准度。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存