(3)不熔也不溶镀层:焊接温度下镀层金属既不熔化,也不溶于焊料中,如Ni、Fe、Sn-Ni等。
4.可焊性镀层的可焊性评估1)影响镀层可焊性的因素影响可焊性镀层可焊性的因素有:镀层本身的性质、厚度、施镀方法、表面涂敷、存放时间和环境、焊接工艺条件(焊料和助焊剂、焊接参数和工艺方法)等。归纳起来如下。(1)基体金属镀层表面被氧化。●引线涂敷后未能彻底清洗,表面可能有氯离子、硫化物等酸性残留物。这些残留物质与空气中的氧和潮气接触后就会使镀层表面氧化。Sn或Pb的氧化物熔点非常高,如PbO熔点为888℃;PbS熔点为1 114℃,SnO2熔点为1127℃。Sn、Pb等的氧化物在正常焊接温度下不能熔解,形成有害的物质覆盖在镀层的表面上,从而导致引线可焊性劣化。●即使表面清洗干净的引线如果储存条件不良,长时间置放在潮湿空气中或含有酸、碱等物质的有害气体中,引线表面镀层金属也会发生氧化,使引线表面出现白点或发黄、发黑。(2)引线基体金属表面处理不良。引线涂敷前某些金属表面有金属氧化物或油脂等时,这些物质会使金属镀层与基体金属结合力下降,造成虚焊和脱焊。(3)引线镀层不良。镀层太薄或镀层不连续或疏松、有针孔,会影响引线的储存性能,使可焊性劣化。在Cu表面镀Sn、SnPb合金,能防止Cu氧化。但由于镀层疏松有针孔,使基体Cu表面与空气之间产生了通道,从而导致下述后果:●大气中的氧和潮气通过镀层中的针孔与基体金属表面接触,使基体金属氧化和腐蚀。●由于Sn、Pb的标准电极电位都比Cu负,是阴极性镀层,当潮气通过镀层中的针孔与基体金属表面接触时便形成一个微电池,镀层金属Sn或SnPb合金将被腐蚀。2)金属扩散层的影响在电镀中镀层Sn和SnPb合金与基体金属Cu表面是原子结合,而热浸涂层Sn和基体金属Cu之间存在Cu6Sn5化合物。这种化合物能使镀层Sn黏附在基体金属上,但随着时间增长,基体金属Cu和镀层金属Sn之间继续扩散,合金层生长过厚就有可能生长出极薄的Cu3Sn化合物,这将降低可焊性,影响焊接强度。
5.引脚可焊性镀层对焊接可靠性的影响1)Au镀层(1)镀层特点。该镀层有很好的装饰性、耐蚀性和较低的接触电阻,镀层可焊性优良,极易溶于钎料中。其耐蚀性和可焊性取决于有否足够的镀层厚度及无孔隙性。薄镀层的多孔隙性,易发生铜的扩散,带来氧化问题而导致可焊性变差。而过厚的镀层又会造成因Au的脆性而带来不牢固的焊接头。许多公司将ENIG Ni/Au用做表面涂层,并获得了成功。然而,在将ENIG Ni/Au涂层与BGA结合起来使用时,有时其结果是不可预见的。最近几年出现两种失效模式:●第一种失效模式是不润湿或半润湿,这种现象被称为“黑色焊盘”;●第二种失效模式是与机械应力相关的层间开裂。(2)镀层厚度。焊接用镀金层是24k纯金,具有柱状结构,有极好的导电性和可焊性。其厚度:1级:0.025~0.05μm;2级:0.05~0.075μm;3级:0.127~0.254μm。2)Ag镀层(1)镀层特点。Ag在常温下具有最好的导热性、导电性和焊接性,除硝酸外,在其他酸中是稳定的。Ag具有很好的抛光性,有极强的反光能力,高频损耗小,表面传导能力高。然而,Ag对S的亲和力极高,大气中微量的S(H2S、SO2或其他硫化物)都会使其变色,生成Ag2S、Ag2O而丧失可焊性。Ag的另一个不足是Ag离子很容易在潮湿环境中沿着绝缘材料表面及体积方向迁移,使材料的绝缘性能劣化甚至短路。(2)化学镀Ag。化学镀Ag层既可以焊接,又可“绑定”(压焊),因而普遍受到重视。化学镀Ag层本质上也是浸Ag。Cu的标准电极电位为φ oCu+/Cu=0.51V,而Ag的标准电极电位为φ oAg+/Ag=0.799V,因而Cu可以置换溶液中的Ag离子而在Cu表面生成沉积的Ag层。3)Ni镀层(1)镀层特点。Ni有很好的耐蚀性,在空气中容易钝化,形成一层致密的氧化膜,因而它本身的焊接性能很差。但也正是这层氧化膜使它具有较高的耐蚀性,能耐强碱,与盐酸和硫酸作用缓慢,仅易溶于硝酸。焊接件镀Ni主要是防止底层金属Cu向表层Au层扩散。实际上它是充当一层阻挡层,故要求镀Ni层的应力要低,并且与Cu和Au层之间结合力要好。(2)镀层厚度。Ni镀层分下述两种。●半光亮Ni:又称低应力Ni或哑Ni,低应力Ni宜于焊接或压接,通常作为板面镀金的底层;●光亮Ni:做插头镀金的底层,根据需要也可作为面层,光亮Ni层均匀、细致、光亮,但不可焊。镀Ni层应具有均匀致密、孔隙率低、延展性好的特点,用于焊接和压接时适宜采用低应力Ni。镀层厚度(IPC-6012规定):不低于:2~2.5μm。打底:1级 2.0μm;2级 2.5~5.0μm;3级 ≥5.0μm。4)Sn镀层Sn不仅怕冷,而且怕热。在温度低于13.2℃时发生相变,由β相(白锡)演变为α相(灰锡),即发生锡瘟现象。而在161℃以上时,白锡又转变成具有斜方晶系结构的斜方锡。斜方锡很脆,一敲就碎,展性很差,叫做“脆锡”。白锡、灰锡、脆锡是锡的3种同素异性体。(1)镀层特点。镀Sn在钢铁上属于阴极镀层,只有其镀层无孔隙时,才能有效地保护钢铁免受腐蚀。不同的工艺方法获得的镀层,其焊接性能也是不同的,如表2所示。
表2
镀暗Sn层外观呈无光泽的灰白色,其焊接性能比光亮镀Sn层好,但它不能抵抗手汗渍的污染。镀暗Sn层经热熔后,其可焊性最好,抗手汗渍污染能力也大为提高。光亮镀Sn层焊接性能好,且在工序传递及储存过程中有很好的抗手汗渍和其他污染的能力。但由于有机添加剂的存在,在加热时会放出气体,造成焊缝中出现气泡、裂口等缺陷,影响焊点的可靠性。(2)镀层厚度。Sn容易与Cu生成金属间化合物,这种金属间化合物可焊性不良。但一定量的金属间化合物是润湿的标志。故Sn镀层中应该有一部分用于金属间化合物的生成,而镀层的表面为氧化膜所占用,剩余部分才可用于改善可焊性。因此,通常镀Sn层厚度为8~10μm。5)Cu镀层Cu是一种优良的可焊性镀层,只要它的表面是新鲜的,或者采取了有效的保护而没有氧化或腐蚀。细晶粒的镀层比粗晶粒镀层具有更好的可焊性。6)Pd镀层化学浸Pd(钯)是元器件引脚的理想Cu-Ni保护层,它既可焊接又可“绑定”(压焊)。可直接镀在Cu上,因Pd有自催化能力,镀层可以增厚,其厚度可达0.08~0.2μm。它也可镀在化学Ni层上。Pd层耐热性高、稳定,能经受多次热冲击。由于Pd价格高于Au,故在一定程度上限制了它的应用。随着IC集成度的提高和组装技术的进步,化学镀Pd在芯片级组装(CSP)上将发挥更有效的作用。
7)SnPb镀层●SnPb合金镀层在PCB生产中可作为碱性保护层,对镀层要求是均匀、致密、半光亮。●SnPb合金熔点比Sn、Pb均低,且孔隙率和可焊性均好。只要含Pb量达到2%~3%就可以消除Sn“晶须”问题。●在PCB上电镀SnPb合金必须有足够的厚度,才能为其提供足够的保护和良好的可焊性。MIL-STD-27513规定,SnPb合金最小厚度为7.5μm。此规定由美国宇航局提出,并得到美国空间工业的公认。英国锡研究所提供的报告中也指出SnPb合金镀层的最薄厚度为7.5μm。●普通SnPb合金镀层结构是薄片状的,有颗粒状暗色外观,镀层多针孔。这种镀层在加工过程中易变色而影响可焊性。经过热熔(红外热熔或热油(甘油)热熔)后,即可得到光亮致密的涂层,提高了抗腐蚀性,延长了寿命。热熔还可使SnPb合金镀层中的有机夹杂物受热逸出,可减少波峰焊接时气泡的产生。●热熔时,Cu、Sn间会生成一层薄的金属间化合物,这是润湿所必需的,但其量必须合适,才能确保良好的润湿性,如果量大反而有害。温度越高,时间越长,越有利于金属间化合物的生长,耗Sn就越多,这样就可能造成靠近金属间化合物的钎料层附近出现富铅相,导致半润湿。8)SnZn镀层Sn、Zn都广泛用于钢铁的防腐蚀上,但它们的防腐蚀机理不一样。Sn是比钢铁更贵的金属,故它是一种阴极镀层,钢铁只有通过Sn镀层的孔隙才能形成腐蚀微电池,故锈蚀出现在孔隙处。Zn是比钢铁更贱的金属,它是通过自身的阳极腐蚀来保护钢铁的。SnZn合金镀层兼备了Sn、Zn两金属的优点,而弥补了它们的缺点。该合金镀层不仅具有很高的耐腐蚀性(75%Sn/25%Zn),可焊性很好(10%Sn/90%Zn),而且不会形成“晶须”。镀层为银白色,具有镜面光泽,成本低,在电子产品中可用于代替Ag镀层。9)镀SnCe合金镀锡层有生长晶须的危险,其倾向随Sn浓度的提高、内应力的增加而增加。Sn还有结构变异,低温产生锡瘟。Sn与Cu有互相渗透生成Cu6Sn5合金扩散层的倾向,过厚的合金层熔点高而脆,影响可焊性。SnCe合金所得到的镀层亮度高,抗蚀,改善可焊性,能细化晶粒,改善镀层。然而在镀层中还几乎测不到Ce。这种镀层能防止基体Cu与Sn的相互扩散,镀层化学稳定性好,抗氧化能力强,可焊性稳定。10)其他无氟、无Pb的Sn基合金无Pb合金的可焊性镀层已投入生产的有Sn/Cu(Cu0.3%),用于电子引线电镀可获得光亮和半光亮镀层。几种无Pb镀层的性能比较如表3所示。
表3