感知运算会是下一步
在现有的设备预诊与制测检测之后,制造系统的边缘运算接下来将会有那些重点应用? 易用性将会是下一个趋势,而要让设备易用,感知会是系统的必要设计理念。
相对于现在的工业物联网中,边缘运算只能找出系统问题,感知运算则可找到问题的原因,并直接提出最佳解决方式,制造系统的智能化设计,必须针对不同用户提供适用功能,决策者、管理者、操作者所需的信息大不相同, 第一线的设备作业者遇到问题时,往往面临极大的时间压力,此时系统并不需要问题以外的信息,只需要系统直接告知问题所在,甚至提出可行的解决方式,像是设备故障,系统会直接在画面显示或以语音提示,告知操作人员先按下某个按键, 让系统先恢复安全状态,之后再提示紧急状态的发生原因。 这就是感知运算最大的优势所在,随着IT领域软硬件技术提升与制造业对智能化概念的逐渐接受,感知运算将成为制造业的应用会越来越多。
观察发展现况,工业4.0在制造业已是大势所趋,无论是设备应应商或制造业者,导入工业物联网的动作也都转趋积极,不过有成效者仍占少数,之前研究机构麦肯锡(McKinsey)就曾针对欧、美、日等地的制造大厂进行调查, 根据调查显示,建置相关系统的企业中,仅有四成认为有获得成效或确实改善了制程,此一结果虽然不至于太惨,但与当初预期仍有一段距离。
至于台湾地区市场,由于制造业族群分布零散,工业4.0要落实在不同产业中仍有困难,原因在于无论是技术成熟度、策略方针到问题痛点,不同型态的制造业,其差异都相当大,因此制造业导入工业物联网的第一步,就是先审视自己所处的位置, 以找出最合适的解决方案。
业者指出,各族群制程系统的技术成熟度不同,对工业物联网的功能需求差异也极大,例如传产可能连第一步将设备连网的阶段都还未达到,更遑论AI,但也有产业已在深入研究AI、机器学习等技术的深化应用,让设备自主优化。
你在工业4.0的哪一阶段?
至于制造业要审视本身在工业4.0中所占的位置,则可透过讯息物理系统(Cyber Physics System)当中的5C架构来进行评判标准, 5C标准非常适合用来检视工业4.0技术的成熟度,并辅助企业审视各阶段所需的代表性能力与技术,顺利导入工业物联网。 5C架构从最底层初阶技术至最高层高阶应用共可分为五个能力组成,分别是链接(Connect)、转化(Covert)、虚拟(Cyber)、感知(Cognition)以及自我配置(Configure)。
第一阶段的链接,最主要是整合OT与IT系统,透过联网技术让机器与机器间能够互相通讯、进行串联。 其次是转化,这阶段是让设备机台在初步的连网后,将撷取到的信息转换为具有分析价值的数据信息,例如设备的失效或良率的分析。 其中,设备端点须具备分析、智能化的能力是这一阶段中非常关键的能力。
在第三个阶段虚拟中,则是强调虚拟化的数字双生(Digital Twins),在所有机台都连网之后,形成另外一个虚拟、同步化的工厂运行,而其数字工厂具备感知、预测能力,可预测“ 非计划内”的设备故障,当故障讯息被数字工厂撷取后,更可以仿真接下来如何执行优化的重新排程,例如像日本近年就非常致力于推动数字工厂的运行。
至于第四层感知阶段,主要则是导入如机器学习、深度学习等一系列的人工智能技术,让机器可自我学习、进化,并从大数据分析中不断进行推算与仿真,进而在设备端预防机器故障与良率不佳的状况。
最后一个阶段自我配置,则是能够机器能够藉由感知、学习的结果,以自主的方式改变机器设备的设定,就好比自动驾驶的概念,利用系统对环境变化的判断与分析自动更改执行命令。 而工厂的机器同样也能够根据感测系统、订单需求等的变化重新排程,订立优化的结果,这也是目前工业4.0追求的最高层级。
透过不同阶段的认知,制造业即可掌握目前自身系统所在的位置,并根据自身问题,向系统整合商提出功能需求,例如产品质量不佳,就以图像处理强化质量控管;要提升效能,则可侦测设备的使用状态,提升OEE(整体设备效率), 而这些功能都可透过简单的AI设置,加快效益的浮现速度。
谈到AI,过去多认为是遥不可及的概念,但其实AI可分为强AI与弱AI,在工业物联网的边缘运算中,通常只需要用到有限效能的弱AI,就可有效提升效能,因此制造业者不必认为太过遥远就一径排斥,可与系统厂商沟通讨论,先从影响不大 、成本不高之处先行建置,再视成效决定下一步动作,透过不断的尝试、修正与导入,企业就可在有限的成本与风险下逐步转型,维持市场竞争力。