1、数据技术(DT)
数据技术(DT)是那些能够成功获取在维度上具有显著性能指标的有用数据技术。因此DT通过识别获取有用数据的适当设备和机制成为5C体系"智能连接"步骤的共同促成者。数据技术的另一个方面是数据通信。智能制造领域的通信并不仅仅只是把获取的数据由源头直接传送到分析。它还涉及到物理空间中制造资源之间的相互作;将计算机和工厂车间的数据传输和存储到云中;从物理空间到网络空间的通信;从网络空间到物理空间的通信。此外DT还需要考虑数据系统的3B(Broken,Bad,Background)问题也就是数据的分裂性、优劣性和背景的数据。
2、分析技术(AT)
分析技术将关键组件透过传感器所采集到的数据转换为有用的信息。数据驱动的建模揭示了来自制造系统的隐藏模式及未知的相互关联性并其他有用信息。此信息可用于资产健康状况预测例如健康值或剩余寿命值,可用于机器诊断预测和健康管理。分析技术将此信息与其他技术整合可以提高生产力和创新。
3、平台技术(PT)
平台技术包括将制造数据存储、分析和反馈的硬件架构。用于分析数据的兼容平台架构是实现敏捷性、复杂事件处理等智能制造特质的主要决定因素。一般来说有独立式、嵌入式和云等三类的平台配置。所以云计算在信息通信技术的计算、储存和服务能力等方面是一项重大优势。云平台可提供快速的服务部署,高度客制化、知识集成、高效的可视化并具有高度可扩展性。
4、运营技术(OT)
运营技术是指根据由数据中提取的信息所做出的一系列决策和行动。向操作人员提供机器和过程健康信息是有一定价值,但工业4.0工厂将超越这一范畴,使机器能够根据OT所提供的洞察力进行沟通和决策。这种机器与机器之间的协作可以在同一车间的两台机器之间,也可以在两个相隔很远的厂区的机器之间发生。他们可以互相分享经验如何去调整特定参数以达到最优性能,并根据其他机器的可用性调整其排程。在工业4.0工厂中,运营技术是通向自感知、自预测、自配置、自比较等4项能力的最后一步。
四、案例研究:智能主轴系统
本节介绍工业人工智能的架构在CNC 机床主轴的应用和实施。在制造业,机床主轴的健康状况是绝对重要的,此案例旨在展示4种赋能技术驱动的工业人工智能可以为机床主轴提供实时监控与性能预测的完整解决方案。此系统设计可以最大限度的降低维护成本同时优化产品质量。如图3所示,考虑应用场景中常见的未满足需求是执行的第一步。
为了解决未满足的需求(一个自感知和自优化的机器)必须关注数据质量、区域的复杂度 、机器之间的不同、专家系统的纳入和多数据源的复杂度等五项挑战。图4概述了如何运用DT、AT、PT和OT应对这些挑战去开发一个智能主轴系统。
图4智能机床主轴平台技术
五、工业人工智能的挑战
工业人工智能的期望是巨大且多方面的,即或要满足企业界的部分期望也将会是人工智能在应用时要面对的独特且真实的挑战。在现存的复杂挑战中,下列问题具有更高的重要性及优先性:
1、机器与机器之相互影响
当AI演算法能够准确的将一组输入数据集映射到一组输出数据集时,它们也容易被因机器与机器间之不同而有的细微变量所影响。AI算法需要确保单个AI解决方案不会对其他下游系统的工作造成干扰或冲突。
2、数据品质
AI演算法需要大量且具有最小偏差的干净数据集,用不准确或不充分的数据集去学习会产生有缺陷的结果。
3、网络安全
越来越多地使用连接技术使得智能制造系统容易受到网络攻击。目前此类危险程度并没有受到足够的重视,而且企业界对存在的网络威胁也没有完善的对策。
六、结论
当AI由科幻成为改变世界的前沿技术时,我们迫切需要系统性的去开发和实施AI,以便了解它在工业 4.0 这个下一世代工业系统中的真实价值。本研究旨在定义工业人工智能这一术语并将其纳入工业 4.0 的范式中。本文也通过对工业人工智能生态系统在当今制造业中的概述为工业人工智能系统的实现提供策略与指导原则。