边缘计算的工业应用场景
制造业向智能化升级转型,生产设备的复杂程度越来越高,大量的数据可能只有部分是关键或者有意义的,例如在海洋中的石油钻井平台,有数千个传感器产生大量数据,其中大部分可能无关紧要,有些只是确认系统是否在正常运行。但是,机器的数据一旦产生就不一定需要通过网络发送,这是不合理的。
所以,以很多场合需要边缘计算系统对数据进行处理,然后再将每日报告发送到中央数据中心进行长期存储,边缘计算系统减少了网络的数据量。目前边缘计算在工业中的应用体现在几个方面,主要是针对设备和供应链系统的监控和优化。
设备保护。随着IT技术和工业技术的融合发展,现场机器设备不断升级,并拥有了一些运算的能力,例如智能水泵可以利用边缘计算进行基本的分析,设定系统安全的阈值,如果设备超限就执行泵关闭的动作。边缘计算设备进行此类应用意味着不需连接互联网和没有决策延迟,只要在设备端安装了边缘计算,即使与云系统连接中断,也可以始终如一地实施关键任务。
性能监控。机器运行的效率影响到工厂整体的产出,所以通常设备厂商会对其机器进行实时的监控,那么采用边缘计算可以实时得到数据和及时解决现场的问题。尽管可以在云中执行很多数据的分析,但某些信息的时间价值很高,响应延迟和等待来自云的决策可能会造成重大损失。因此,使用边缘计算来对来自工厂中传感器的多个数据点进行实时分析是十分关键的。
供应链优化。要提升工厂的效率,通常需要对整个生产过程进行评估和优化,从产品设计、材料采购、制造、销售和物流等环节都要进行分析。边缘计算可以在短时间内从多个来源获取数据,并进行分析整理,可以适应业务系统中的供应链优化计划。