9.13 OFweek工业物联网技术及应用研讨会

人工智能之于工业 应当是融入者而非颠覆者

先进制造业 中字

2018年1月13日,由极客邦科技InfoQ中国主办的AICon全球人工智能与机器学习技术大会在北京国际会议中心召开。此次大会以“助力人工智能落地”为主题,汇聚了国内外知名企业和顶尖人工智能专家,分享落地案例、探讨技术实践,为参会嘉宾提供了选型方案,提前预估相关风险和收益,助推技术落地行业。

人工智能之于工业 应当是融入者而非颠覆者

来自北京天泽智云科技有限公司的CTO刘宗长分享了《云计算、边缘计算、CPS与工业智能》的主题演讲。

刘宗长从工业智能的定义展开演讲。未来的智能工业系统,能实现无忧的工业环境。要达到这个目标需要做到以下三点:

第一、不断提升工业的价值,用公式:质量÷成本×客户价值表示,即用最小的成本生产出最高质量的产品;

第二、让隐性问题显性化,从原来被动式解决问题变成预防和避免问题,实现三个零:零意外停机、零缺陷、零浪费;

第三、让工业知识民主化,通过数据挖掘和建模,让知识不仅仅服务于某一个企业,而是以一种方式在不同企业当中流转。

如何将工业智能落地?刘宗长提出了“ABCDE+O” 技术体系 – A代表建模分析技术,B代表商业分析技术,C代表赛博平台技术,D代表数据管理技术,E代表工程技术,O代表运营技术,这一庞大的技术体系将计算机科学、智能建模分析与工业领域知识有效地融合,是工业智能真正落地的全面支撑。

天泽智云首席顾问,美国NSF智能维护系统中心主任李杰教授提出,无论是人工智能还是深度学习或者任何一种技术,当进入工业领域时,都必须满足3S的条件:

Standard(标准化):即如何与现有工业系统的标准化体系相结合,包括方法论、建模过程、数据质量、模型评价、容错机制、基于预测的操作规程、不确定性管理等各方面的标准化。如果不能够和现在已有标准相互去融合,则很难真正将技术融入工业,更无从去产生价值。

Systematic(体系化):在技术层级和应用层级方面的体系化,需要建立一套协同体系,明确智能化在部件级、设备级、系统级和社区级等不同层级中的任务边界及相互的接口。我们在工业里面发现无论是离散型制造还是流程型制造,单点突破很难做到价值提升,一定是整体系统导入才能实现。

Sustainable(稳定可持续):与人工智能预测的可解释性和结果的确定性相似,工业智能要能够做到同一组数据和同一个模型,不同的人来训练得到的结果都一样,否则怎么做到制造系统的标准化和一致性管理呢?神经网络也好,深度学习也好,如果它的结果不可复现,就很难融入到体系里面去。

因此,人工智能技术进入工业领域,应当是融入的方式,而非颠覆者的姿态。

之后刘宗长通过分享天泽智云在风电领域的实践案例,为在场嘉宾深入浅出地讲解了如何将计算机科学、智能建模分析与工业领域知识有效地融合,为风电产业实现智能化的价值提升。

中国风电行业在过去10年中蓬勃发展,然而风电产业的成本高昂,尤其运维成本和管理成本占了非常大的比例。针对这一挑战,天泽智云自主研发了WindInsight风场智能运维系统,对风场运营进行精准预测与管理、对风机进行健康管理、对运维策略进行优化,这些都为风机智能化应用和风场的智能化升级提供了很大的机会空间。

实体空间中的对象是风机和风场,基于风机运行产生的各类数据进行分析,可以对关键部件健康状态和风机的发电性能进行对称建模,这样就在赛博空间里建立了风机的镜像模型。基于风机的运行状态进行维护策略优化时,可以结合对未来三天内每台风机的预测发电量等信息制定成本最优的排程决策,还可以结合发电量预测给电网调度提供更好的决策。

赛博空间里这些模型是哪里来的呢?针对风电应用中常用的场景,比如怎么预测叶片结冰,怎么预测叶片断裂和破损等等,用户可以在GenPro这样的工业智能分析建模平台中结合自己的历史数据完成建模,并且部署到前面的生产环节当中去。接下来我们分别从生产管理、健康管理和运维管理三个方面介绍人工智能如何发挥价值。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

8.31 OFweek人工智能产业投融资峰会
8.24【在线研讨会】IFS信息化进阶管理
还不是OFweek会员,马上注册
反馈
打开