管理大数据的一个最有效的方法是通过用例建立用例存储库。通过用例分析方法,我们能够理解与认识数据、数据的命名、数据的功能、数据的转换需求。另外,分析产生积极成果的用例触发新的问题并诞生新的用例。
将用例的积累、相关思考与结果行为结合起来将促成建立一个有效的大数据平台。这个大数据平台形成了一个智能的、有序的、结构化的方法论,该方法论允许分散化的分析团队利用先前的工作用例。
使用用例方法论的另一个重要的科技优势是——它促进基础设施的发展规模。在刚开始,没有必要利用重要资源来形成巨大的基础设施。而且,平台起初从小开始,随着需要的增加而扩大。
图1:制造业各部门数据利用图
在制造业中,数据是由每台机器、机器间的相互作用、机器间的传感器、检测仪表、控制系统、操作者、工程师等产生的。现如今,只有一部分数据被分析利用。
随着产品越来越智能,他们产生有价值的数据。无论是系统,还是智能装备,均能受益于这些数据,制造业必须获取工具来利用这些未开发的知识。
考虑到不久的将来:为了建立用例,一条简单的生产线将能够很快地沟通、传输数据并保存至云端。一个可能的用例将减少产线时间,这是在制造业中具有明显优势的行为。在该例子中,关于生产效率的数据可能每一秒被捕获一次,并被传送到像云端环境一样的软件服务存储库。利用复杂的统计工具对数据进行分析,并采取具体行动来改变基于从分析获取的知识的价值需要。反过来,这个用例可能为同样的问题提供了新的见解,将新的数据引入了新的分析、产生新的操作并交付新的业务价值。
3.数据转换框架:战略性地使用有价值的数据
自通过工业革命引入机械加工过程以来,制造业取得了长久的发展,并且从计算机化制造工艺的几十年中取得效率。但是,随着我们步入数字化信息革命时代,这为制造业带来了更大的利益。有价值的数据正在增加,制造业必须利用这些数据达到下一个竞争水平。