大数据挖掘少不了人工智能技术
大数据分为“结构化数据”与“非结构化数据”。
“结构化数据”是指企业的客户信息、经营数据、销售数据、库存数据等,存储于普通的数据库之中,专指可作为数据库进行管理的数据。相反,“非结构化数据”是指不存储于数据库之中的,包括电子邮件、文本文件、图像、视频等数据。
目前,非结构化数据激增,企业数据的80%左右都是非结构化数据。随着社交媒体的兴起,非结构化数据更是迎来了爆发式增长。复杂、海量的数据通常被称为大数据。
但是,这些大数据的分析并不简单。文本挖掘需要“自然语言处理”技术,图像与视频解析需要“图像解析技术”。如今,“语音识别技术”也不可或缺。这些都是传统意义上人工智能领域所研究的技术。
近些年,人工智能的研究和应用又掀起新高潮。一方面是计算机硬件性能的突破,另一方面是以云计算为代表的计算技术的快速发展,使得信息处理速度和质量大为提高,能够快速、并行处理海量数据。
金融危机以后,欧美国家回归前沿科学技术的战略布局,更加重视人工智能技术的研究,特别是在人工智能基础研究、人脑研究、网络融合、3D智能打印等领域不断有研究突破。越来越多的科学家期待人工智能成为人类进入知识经济时代后,下一次生产力飞跃的突破口。如今,人工智能技术的研究和发展已经在很大程度上影响着现在的计算机相关产业,并决定了计算机、网络技术的未来发展方向。